Lokesh Krishna Rajan

(†) Website In Linkedin & Google Scholar & Twitter (†) Github

EDUCATION

- University of Southern California Ph.D. in Mechanical Engineering
- Indian Institute of Technology Varanasi B.Tech in Electronics Engineering

SKILLS AND INTERESTS

Key competencies:	Robotics, Controls, Deep Reinforcement learning, Optimisation		
Languages:	Python, C, C++		
Tools and frameworks:	Pytorch, Stable baselines, MuJoCo, Git, PyBullet, RAISIM, CMake, LaTeX		
Areas of interests:	Learning based and optimal control, Athletic intelligence and dynamic motor		
	skills of robots, Legged locomotion		

PUBLICATIONS

IROS 2023	Learning Multimodal Bipedal Locomotion and Implicit Transitions: A	
(accepted)	Versatile Policy Approach arXiv, Video	
	Lokesh Krishna, Quan Nguyen	
ICRA 2022	Linear Policies are Sufficient to Realize Robust Bipedal Walking on	
+ RA-L	Challenging Terrains IEEE Xplore, Video	
(accepted)	Lokesh Krishna*, Guillermo Castillo*, Utkarsh Mishra, Ayonga Hereid, Shishir Kolathaya	
IROS 2021	Learning Linear Policies for Robust Bipedal Locomotion on Terrains with	
(accepted)	Varying Slopes arXiv, Video	
	Lokesh Krishna, Utkarsh Mishra, Guillermo Castillo, Ayonga Hereid, Shishir Kolathaya	
CoRL 2020	Robust Quadrupedal Locomotion on Sloped Terrains: A Linear Policy Approach	
(accepted)	Kartik Paigwar, Lokesh Krishna, Sashank Thirumala, Naman Khetan, Aditya Varma Sagi,	
	Shalabh Bhatnagar, Ashitava Ghosal, Bharadwaj Amrutur, Shishir Kolathaya arXiv, Video	

RESEARCH EXPERIENCE

Graduate Research Assistant	Aug $2022 - Present$
Dynamic Robotics and Control Laboratory, USC Viterbi	Lab's webpage
Student Collaborator	$Dec \ 2021 - Jun \ 2022$
Movement Control Lab, MIT	Lab's webpage
Guest Researcher	Mar $2021 - Feb \ 2022$
Movement Generation and Control Group, MPI-IS, Germany	Lab's webpage
Student Researcher	Mar 2020 - Jan 2022
Stoch Lab, RBCCPS, Indian Institute of Science	Lab's webpage

PROJECTS

hmm: a mujoco framework for learning human motor models with Deep RL Jan 2022 – Jun 2022 Supervisor: Dr Nidhi Seethapathi, MIT Github (request access)

• Developed a mujoco-based framework for seamless experimentation and modelling of human motor control and locomotor adaptation through Deep RL. The framework includes custom tools for integration with marker-based mocap data, model scaling, inverse kinematics and dynamics.

Agile Bipedal Locomotion Through Trajectory Driven Multi Stage LearningMar 2021 – Feb 2022Supervisor: Dr Majid Khadiv, MPI-ISGithub (request access), Video

Aug 2022 - Present Overall GPA: 3.68/4

May 2018 - May 2022 Overall GPA: 8.68/10

∑: **Email ∑**: +1-2135518252 Extended a controller framework for robust and agile bipedal manoeuvres through two-stage policy training. Stage 1 incorporated motion imitation from a reference motion generated through trajectory optimisation. Stage 2 involved further robustifying the policy to contact uncertainties and pose perturbations while integrating a few hardware quality costs to leverage sim-to-real transfer.

JerBot – a bio-mimetic bipedal robot

Under: Science and Technology Council, IIT Varanasi

· Formulated an alternate design for addressing the problem of biped locomotion, mimicking the agile and superior locomotion skills of **Jerboa**. Fabricated our first prototype and did the mechanical validation of our hardware through Heuristic and PD control, load testing, disturbance rejection, etc and later built a custom **Open AI Gym environment** for experimenting with various Deep RL algorithms to learn optimal control strategies

AADOpt: Antenna Array Design and Synthesis through Optimisation Jan 2020 - Jun 2021 Supervisor: Dr. Manoj Kumar Meshram, IIT Varanasi Github, Report

- Proposed a novel design framework for the fabrication of Antenna Arrays by formulating it as an optimisation problem and solved it using the model-free and gradient-free Genetic Algorithm(GA).
- The end result is a novel design pipeline, with a threefold contribution, 1) A flexible and generalised design toolkit 2) allows the formulation of task-specific costs 3) accounts for various topological constraints

Intelligent Picking and Transportation Robot

Under: Group Project

- · Designed a unique and cost-efficient industrial robot that could autonomously identify and displace objects inside a work space of enormous dimensions 4 x 2 x 0.9 m^3 payloads up to 2 kg, to be deployed in warehouses.
- Developed a novel Software pipeline using Over head Object Detection(Using Yolo V3) and 3D Grasp Estimation(using GR-ConvNet) which could easily be deployed in any industrial robot.

TOWRpy - a simulation test bed for TOWR

Supervisor: Dr.Shishir N. Y. Kolathaya, IISc

- · Built a Simulation Test Bed in Pybullet, for validating the trajectories generated by Trajectory Optimizer for Walking Robots(TOWR)-an open-source C++ library for trajectory optimization.
- · Developed both visualization and simulation tools that could be used for experimenting with learning **based techniques** to bridge the inherent sim to real gap in realizing TOWR generated trajectories.

ACHIEVEMENTS AND EXTRA CURRICULAR ACTIVITIES:

- Qualified for the National Finale of Flipkart Grid 2.0 Robotics Challenge (and emerged as one of the top 3 teams all over India under the problem statement Intelligent Picking. Certificate
- Won the IIT Color, and Certificate of Merit at Gymkhana Awards 2021-22, 2019-20 from the IIT(BHU) Gymkhana, for my contribution to robotics in the institute.
- Won the **IBGAA Graduate Study Application Scholarship** from the IIT(BHU) Alumni Association.
- Winner of Pixelate a robotics event, held in Technex 2019, IIT Varanasi. Certificate, Video.
- Winner of Mosaic and Funkit, techincal events held in Udyam 2019 by the Department of Electronics Engineering, IIT Varanasi. Certificate 1, Github, Video, Certificate 2, .
- Showcased our project JerBot in Engineer's Conclave and represented the institute team in DRDO SASE's UAV Fleet challenge held in Inter IIT Tech Meet 8.0, 2019, hosted by IIT Roorkee
- Founded a student research group named **RoboReG** at IIT Varanasi, and successfully mentored projects from various domains of robotics **Group's Website**.

 $Oct\ 2019-Sep\ 2021$ Github, Video

Jun 2020 – Aug 2020 Video

> May 2020 Github